TY - JOUR
T1 - 124I-HuCC49deltaCH2 for TAG-72 antigen-directed positron emission tomography (PET) imaging of LS174T colon adenocarcinoma tumor implants in xenograft mice
T2 - Preliminary results
AU - Zou, Peng
AU - Povoski, Stephen P.
AU - Hall, Nathan C.
AU - Carlton, Michelle M.
AU - Hinkle, George H.
AU - Xu, Ronald X.
AU - Mojzisik, Cathy M.
AU - Johnson, Morgan A.
AU - Knopp, Michael V.
AU - Martin, Edward W.
AU - Sun, Duxin
N1 - Funding Information:
The authors would like to thank Dr. Jeffrey Schlom (Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892) for his generous support with providing the anti-TAG-72 monoclonal antibody, HuCC49deltaCH2, and for his valuable input into this study. This work was performed entirely at The Ohio State University and was partially supported by the grant RO1 CA120023 to DS from the National Cancer Institute (NCI).
PY - 2010/8/6
Y1 - 2010/8/6
N2 - Background: 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) is widely used in diagnostic cancer imaging. However, the use of 18F-FDG in PET-based imaging is limited by its specificity and sensitivity. In contrast, anti-TAG (tumor associated glycoprotein)-72 monoclonal antibodies are highly specific for binding to a variety of adenocarcinomas, including colorectal cancer. The aim of this preliminary study was to evaluate a complimentary determining region (CDR)-grafted humanized CH2-domain-deleted anti-TAG-72 monoclonal antibody (HuCC49deltaCH2), radiolabeled with iodine-124 (124I), as an antigen-directed and cancer-specific targeting agent for PET-based imaging.Methods: HuCC49deltaCH2 was radiolabeled with 124I. Subcutaneous tumor implants of LS174T colon adenocarcinoma cells, which express TAG-72 antigen, were grown on athymic Nu/Nu nude mice as the xenograft model. Intravascular (i.v.) and intraperitoneal (i.p.) administration of 124I-HuCC49deltaCH2 was then evaluated in this xenograft mouse model at various time points from approximately 1 hour to 24 hours after injection using microPET imaging. This was compared to i.v. injection of 18F-FDG in the same xenograft mouse model using microPET imaging at 50 minutes after injection.Results: At approximately 1 hour after i.v. injection, 124I-HuCC49deltaCH2 was distributed within the systemic circulation, while at approximately 1 hour after i.p. injection, 124I-HuCC49deltaCH2 was distributed within the peritoneal cavity. At time points from 18 hours to 24 hours after i.v. and i.p. injection, 124I-HuCC49deltaCH2 demonstrated a significantly increased level of specific localization to LS174T tumor implants (p = 0.001) when compared to the 1 hour images. In contrast, approximately 50 minutes after i.v. injection, 18F-FDG failed to demonstrate any increased level of specific localization to a LS174T tumor implant, but showed the propensity toward more nonspecific uptake within the heart, Harderian glands of the bony orbits of the eyes, brown fat of the posterior neck, kidneys, and bladder.Conclusions: On microPET imaging, 124I-HuCC49deltaCH2 demonstrates an increased level of specific localization to tumor implants of LS174T colon adenocarcinoma cells in the xenograft mouse model on delayed imaging, while 18F-FDG failed to demonstrate this. The antigen-directed and cancer-specific 124I-radiolabled anti-TAG-72 monoclonal antibody conjugate, 124I-HuCC49deltaCH2, holds future potential for use in human clinical trials for preoperative, intraoperative, and postoperative PET-based imaging strategies, including fused-modality PET-based imaging platforms.
AB - Background: 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) is widely used in diagnostic cancer imaging. However, the use of 18F-FDG in PET-based imaging is limited by its specificity and sensitivity. In contrast, anti-TAG (tumor associated glycoprotein)-72 monoclonal antibodies are highly specific for binding to a variety of adenocarcinomas, including colorectal cancer. The aim of this preliminary study was to evaluate a complimentary determining region (CDR)-grafted humanized CH2-domain-deleted anti-TAG-72 monoclonal antibody (HuCC49deltaCH2), radiolabeled with iodine-124 (124I), as an antigen-directed and cancer-specific targeting agent for PET-based imaging.Methods: HuCC49deltaCH2 was radiolabeled with 124I. Subcutaneous tumor implants of LS174T colon adenocarcinoma cells, which express TAG-72 antigen, were grown on athymic Nu/Nu nude mice as the xenograft model. Intravascular (i.v.) and intraperitoneal (i.p.) administration of 124I-HuCC49deltaCH2 was then evaluated in this xenograft mouse model at various time points from approximately 1 hour to 24 hours after injection using microPET imaging. This was compared to i.v. injection of 18F-FDG in the same xenograft mouse model using microPET imaging at 50 minutes after injection.Results: At approximately 1 hour after i.v. injection, 124I-HuCC49deltaCH2 was distributed within the systemic circulation, while at approximately 1 hour after i.p. injection, 124I-HuCC49deltaCH2 was distributed within the peritoneal cavity. At time points from 18 hours to 24 hours after i.v. and i.p. injection, 124I-HuCC49deltaCH2 demonstrated a significantly increased level of specific localization to LS174T tumor implants (p = 0.001) when compared to the 1 hour images. In contrast, approximately 50 minutes after i.v. injection, 18F-FDG failed to demonstrate any increased level of specific localization to a LS174T tumor implant, but showed the propensity toward more nonspecific uptake within the heart, Harderian glands of the bony orbits of the eyes, brown fat of the posterior neck, kidneys, and bladder.Conclusions: On microPET imaging, 124I-HuCC49deltaCH2 demonstrates an increased level of specific localization to tumor implants of LS174T colon adenocarcinoma cells in the xenograft mouse model on delayed imaging, while 18F-FDG failed to demonstrate this. The antigen-directed and cancer-specific 124I-radiolabled anti-TAG-72 monoclonal antibody conjugate, 124I-HuCC49deltaCH2, holds future potential for use in human clinical trials for preoperative, intraoperative, and postoperative PET-based imaging strategies, including fused-modality PET-based imaging platforms.
UR - http://www.scopus.com/inward/record.url?scp=77955200847&partnerID=8YFLogxK
U2 - 10.1186/1477-7819-8-65
DO - 10.1186/1477-7819-8-65
M3 - Article
C2 - 20691066
AN - SCOPUS:77955200847
SN - 1477-7819
VL - 8
JO - World journal of surgical oncology
JF - World journal of surgical oncology
M1 - 65
ER -