Abstract

The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to challenge the efficacy of vaccination efforts against coronavirus disease 2019 (COVID-19). The Omicron XBB lineage of SARS-CoV-2 has presented dramatic evasion of neutralizing antibodies stimulated by mRNA vaccination and COVID-19 convalescence. XBB.1.16, characterized by two mutations relative to the dominating variant XBB.1.5, i.e., E180V and K478R, has been on the rise globally. In this study, we compare the immune escape of XBB.1.16 with XBB.1.5, alongside ancestral variants D614G, BA.2, and BA.4/5. We demonstrate that XBB.1.16 is strongly immune evasive, with extent comparable to XBB.1.5 in bivalent-vaccinated healthcare worker sera, 3-dose-vaccinated healthcare worker sera, and BA.4/5-wave convalescent sera. Interestingly, the XBB.1.16 spike is less fusogenic than that of XBB.1.5, and this phenotype requires both E180V and K478R mutations to manifest. Overall, our findings emphasize the importance of the continued surveillance of variants and the need for updated mRNA vaccine formulations.

Original languageEnglish
Article number113193
JournalCell Reports
Volume42
Issue number10
DOIs
StatePublished - Oct 31 2023

Keywords

  • CP: Immunology
  • CP: Microbiology|
  • Omicron
  • XBB.1.16
  • fusogenicity
  • immune evasion
  • neutralizing antibody

Fingerprint

Dive into the research topics of 'Continued evasion of neutralizing antibody response by Omicron XBB.1.16'. Together they form a unique fingerprint.

Cite this